Google+

BBC Future

Will We Ever?

Will we ever... talk to the animals?

About the author

Ed is an award-winning science author. He writes the blog Not Exactly Rocket Science and his work has appeared in New Scientist, Nature, Scientific American, the Guardian, the Times, Wired UK, Discover and more. He tweets at @edyong209.

(Copyright: Thinkstock)

(Copyright: Thinkstock)

History is littered with animals who have "communicated" with humans, but as work with dolphins shows it is difficult to strike up a two-way conversation.

“What’s that Flipper? The treasure is over there?” So went a typical plotline for the popular TV series featuring the cute, bottlenosed dolphin who could communicate with his human guardians, and who – in the time-honoured fashion – used his animal powers to apprehend criminals.

The idea that animals like Flipper can communicate with humans is not just the preserve of the small and big screen. History is littered with celebrity animals who have communicated with human scientists, with varying degrees of success. Many apes, including Washoe and Nim the chimps, and Kanzi the bonobo, have learned to communicate by using sign language or symbols on a keyboard. Alex, an African grey parrot learned over 100 English words, which he could use and combine appropriately; his poignant last words to Irene Pepperberg, his scientist handler, were “You be good. I love you. See you tomorrow."

Dolphins hold a particular fascination; we are captivated by their intelligence and beauty, and swimming with dolphins features regularly on lists of things to do before you die. Denise Herzing has a lifetime of such experiences. For the last 27 years, she has been swimming with a group of Atlantic spotted dolphins in Florida as part of the Wild Dolphin Project. She can identify every individual and they, in turn, seem to trust and recognise her. It is a solid foundation for the boldest attempt yet to talk with dolphins.

One-way chat

“Talk” is tricky to define. A SeaWorld trainer who prompts a dolphin to jump for fish is arguably communicating with it. But such simple one-way interactions are a far cry from the conversational world of Dr Doolittle. Here, the dolphin responds, but says nothing intelligible back. Herzing’s vision is much more ambitious – she wants to establish two-way communication with her dolphins, with both species exchanging and understanding information.

The idea of talking to dolphins has a long and chequered history. It was widely publicised in the 1960s by John Lilly, who argued that dolphins have such large brains that they must be extremely intelligent and have a natural language. All we had to do was to “crack the code”. Much of Lilly’s work was highly questionable. He once flooded a house to keep a captive dolphin, instigated failed attempts to teach them spoken English, and even gave the animals LSD (while taking the drug himself). But there is no denying his influence in popularising the idea of two-way dolphin communication. “He said that in a few years, we will have established complex dialogue with them,” says Justin Gregg from the Dolphin Communication Project. “And he was saying that every few years.”

Lilly was right about dolphin intelligence, but not dolphin language. A true language involves small elements that combine into larger chains, to convey complex, and sometimes abstract, information. And there is no good evidence that dolphins have that, despite their rich repertoire of whistles and clicks.

Little less conversation

Wild dolphin communication is hard to study. They are fast-moving and hard to follow. They travel in groups, making it hard to assign any call to a specific individual. And they communicate at frequencies beyond what humans can hear. Despite these challenges, there is some evidence that dolphins use sounds to represent concepts. Each individual has its own “signature whistle” which might act like a name. Developed in the first year of life, dolphins use these whistles as badges of identity, and may modulate them to reflect motivation and mood. This year, a study showed that when wild dolphins meet, one member of each group exchanges signature whistles.

But beyond this, dolphin chat is still largely mysterious. “To communicate with dolphins, we need to understand how they communicate with each other in the natural world,” says psychologist Stan Kuczaj at the University of Southern Mississippi. “We still don’t know basic things like what the units of dolphin communication are. Is a whistle the equivalent of a “word” or a “short sentence”? We don’t know.”

We may not be able to understand them yet, but we know that dolphins can learn to understand us. In the 1970s, Louis Herman taught an invented sign language, complete with basic syntax, to a bottlenose dolphin called Akeakamai. For example, if he made the gestures for “person surfboard fetch”, Akeakamai would bring the board to him, while “surfboard person fetch” would prompt her to carry the person to the board. His experiments showed that dolphins could understand hundreds of words, and how those words could be combined using grammatical rules.

What’s my motivation?

Herman’s work was groundbreaking, but this was still one-way communication. It focused on comprehension, not conversation. In the 1980s, Diana Reiss had more luck by showing that dolphins could use underwater keyboards to make basic requests. When they prodded keys with their snouts, a whistle would play and Reiss gave a reward like a ball. Eventually, the dolphins used the artificial whistles to ask for the associated rewards.  

But as conversations go, these were shallow ones. “The dolphins were only really interested in communicating about needs that they had, like a tool they needed or a fish they wanted,” says Kuczaj, who was involved in a similar project at DisneyWorld’s EPCOT Center. “We hoped they would also comment on other things going on in the aquarium but they didn’t.”

It is difficult persuading dolphins to learn some arbitrary signals, like a whistle signifying a ball, and then use them in a social context, admits Gregg. “They don’t seem to run with it the same way that chimps or bonobos have. The big stumbling block is motivation. Dolphins don’t seem to care.”

Herzing disagrees. She notes that captive animals, which often lack stimulation, will respond to systems like the underwater keyboards. She thinks that these experiments disappointed because they were cumbersome. “The dolphins swim very fast and went to where they were requested, but humans are very slow in the water. There wasn’t enough real-time interaction.”

Chat line

Herzing is trying to solve that problem with Cetacean Hearing and Telemetry (CHAT) – a lighter, portable version of the underwater keyboards. It consists of a small phone-sized computer, strapped to a diver’s chest and connected to two underwater recorders, or hydrophones. The computer will detect and differentiate dolphin sounds, including the ultrasonic ones we cannot hear, and use flashing lights to tell the diver which animal made the call.

The CHAT device can also play artificial calls, allowing Herzing to coin dolphin-esque “words” for things that are relevant to them, like “seaweed” or “wave-surfing". She hopes the dolphins will mimic the artificial whistles, and use them voluntarily. By working with wild animals, and focusing on objects in their natural environment, rather than balls or hoops, Herzing hopes to pique their interest.

Herzing emphasises that her device is not a translator. It will not act as a dolphin-human Rosetta stone. Instead, she wants both species create a joint form of communication that they are both invested in. She hopes that CHAT will tap into the “natural propensity” that dolphins have “for creating common information when they have to interact”. For example, in Costa Rica, distantly related bottlenose and Guyana dolphins will adopt a shared collection of sounds when they come together, using sounds that they don’t use when apart.

As with past projects, all of this depends on whether the dolphins play along. Kuczaj says, “It’s a remarkable challenge because she is working with wild dolphins so they’ve got the option to participate or not.” Here, Herzing has an edge, since the animals know her, and vice versa. “We’ve been observing them underwater every summer since 1985,” she says. “I know the individuals personally – their personalities and relationships. We’ve got a pretty good handle on what they’d be interested in.” Perhaps this combination of cutting-edge technology and old-school fieldwork will finally produce the conversations that have eluded scientists for so long.

If you would like to comment on this story or anything else you have seen on Future, head over to our Facebook page or message us on Twitter.

BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.