Higgs boson-like particle discovery claimed at LHC

 

The moment when Cern director Rolf Heuer confirmed the Higgs results

Related Stories

Cern scientists reporting from the Large Hadron Collider (LHC) have claimed the discovery of a new particle consistent with the Higgs boson.

The particle has been the subject of a 45-year hunt to explain how matter attains its mass.

Both of the Higgs boson-hunting experiments at the LHC (Atlas and CMS) see a level of certainty in their data worthy of a "discovery".

More work will be needed to be certain that what they see is a Higgs, however.

Prof Stephen Hawking tells the BBC's Pallab Ghosh the discovery has cost him $100

The results announced at Cern (European Organization for Nuclear Research), home of the LHC in Geneva, were met with loud applause and cheering.

Prof Peter Higgs, after whom the particle is named, wiped a tear from his eye as the teams finished their presentations in the Cern auditorium.

"I would like to add my congratulations to everyone involved in this achievement," he added later.

"It's really an incredible thing that it's happened in my lifetime."

Prof Stephen Hawking joined in with an opinion on a topic often discussed in hushed tones.

"This is an important result and should earn Peter Higgs the Nobel Prize," he told BBC News.

"But it is a pity in a way because the great advances in physics have come from experiments that gave results we didn't expect."

'Dramatic'

The CMS experiment team claimed they had seen a "bump" in their data corresponding to a particle weighing in at 125.3 gigaelectronvolts (GeV) - about 133 times heavier than the protons that lie at the heart of every atom.

The BBC's George Alagiah explains the Higgs boson

They claimed that by combining two data sets, they had attained a confidence level just at the "five-sigma" point - about a one-in-3.5 million chance that the signal they see would appear if there were no Higgs particle.

However, a full combination of the CMS data brings that number just back to 4.9 sigma - a one-in-two million chance.

Prof Joe Incandela, spokesman for CMS, was unequivocal: "The results are preliminary but the five-sigma signal at around 125 GeV we're seeing is dramatic. This is indeed a new particle," he told the Geneva meeting.

The Atlas experiment results were even more promising, at a slightly higher mass: "We observe in our data clear signs of a new particle, at the level of five sigma, in the mass region around 126 GeV," said Dr Fabiola Gianotti, spokeswoman for the Atlas experiment at the LHC.

Peter Higgs Peter Higgs joined three of the six theoreticians who first predicted the Higgs at the conference

Prof Rolf Heuer, director-general of Cern, commented: "As a layman I would now say I think we have it."

"We have a discovery - we have observed a new particle consistent with a Higgs boson. But which one? That remains open.

"It is a historic milestone but it is only the beginning."

Commenting on the emotions of the scientists involved in the discovery, Prof Incandela said: "It didn't really hit me emotionally until today because we have to be so focussed… but I'm super-proud."

Dr Gianotti echoed Prof Incandela's thoughts, adding: "The last few days have been extremely intense, full of work, lots of emotions."

A confirmation that this is the Higgs boson would be one of the biggest scientific discoveries of the century; the hunt for the Higgs has been compared by some physicists to the Apollo programme that reached the Moon in the 1960s.

Statistics of a 'discovery'

Swiss franc coin
  • Particle physics has an accepted definition for a "discovery": a five-sigma level of certainty
  • The number of standard deviations, or sigmas, is a measure of how unlikely it is that an experimental result is simply down to chance, in the absence of a real effect
  • Similarly, tossing a coin and getting a number of heads in a row may just be chance, rather than a sign of a "loaded" coin
  • The "three sigma" level represents about the same likelihood of tossing nine heads in a row
  • Five sigma, on the other hand, would correspond to tossing more than 21 in a row
  • Unlikely results are more probable when several experiments are carried out at once - equivalent to several people flipping coins at the same time
  • With independent confirmation by other experiments, five-sigma findings become accepted discoveries

Scientists would then have to assess whether the particle they see behaves like the version of the Higgs particle predicted by the Standard Model, the current best theory to explain how the Universe works. However, it might also be something more exotic.

All the matter we can see appears to comprise just 4% of the Universe, the rest being made up by mysterious dark matter and dark energy.

A more exotic version of the Higgs could be a bridge to understanding the 96% of the Universe that remains obscure.

Scientists will have to look at how the Higgs decays - or transforms - into other, more stable particles after being produced in collisions at the LHC.

Dr Pippa Wells, a member of the Atlas experiment, said that several of the decay paths already showed deviations from what one would expect of the Standard Model Higgs.

For example, a decay path where the Higgs transforms into two photon particles was "a bit on the high side", she explained.

These could get back into line as more statistics are added, but on the other hand, they may not.

"We're reaching into the fabric of the Universe at a level we've never done before," said Prof Incandela.

"We're on the frontier now, on the edge of a new exploration. This could be the only part of the story that's left, or we could open a whole new realm of discovery."

The Standard Model and the Higgs boson

Standard model

The Standard Model is the simplest set of ingredients - elementary particles - needed to make up the world we see in the heavens and in the laboratory

Quarks combine together to make, for example, the proton and neutron - which make up the nuclei of atoms today - though more exotic combinations were around in the Universe's early days

Leptons come in charged and uncharged versions; electrons - the most familiar charged lepton - together with quarks make up all the matter we can see; the uncharged leptons are neutrinos, which rarely interact with matter

The "force carriers" are particles whose movements are observed as familiar forces such as those behind electricity and light (electromagnetism) and radioactive decay (the weak nuclear force)

The Higgs boson came about because although the Standard Model holds together neatly, nothing requires the particles to have mass; for a fuller theory, the Higgs - or something else - must fill in that gap

Paul.Rincon-INTERNET@bbc.co.uk and follow me on Twitter

 

More on This Story

Related Stories

The BBC is not responsible for the content of external Internet sites

Comments

This entry is now closed for comments

Jump to comments pagination
 
  • rate this
    +21

    Comment number 1566.

    Despite being a bunch of monkeys in shoes, we really are quite brilliant sometimes. To think that there are people worrying about the latest x-factor winner when there is stuff like this going on.

    From the theory, to the idea, to the engineering, to the experiments, to the data, to the result, I'm so happy that we can all celebrate just how important intelligent people are to us.

  • rate this
    +5

    Comment number 1528.

    A great day in the history of science. Congrats to all concerned. Centuries of work, sacrifice and talent lead to our understanding of the standard model and now with more of the same this is the final piece of the jigsaw puzzle - more to do of course...

    What a contrast to the anti-scientific, religious fanatics "the world was made 7000 years ago" nonsense based upon nothing more than dogmatism.

  • rate this
    +12

    Comment number 1479.

    Its so frustrating to read comments saying this has no direct use so its a waste. Electrons where discovered and at the time had no use; imagine a world without power. Quantum physics had no use at the time but allowed the creation of electonics. The web was created in the same way. Its called discovery. We discover then spawn a technology we cannot even imagine today - thats a snip at 10bn.

  • rate this
    +13

    Comment number 1416.

    A remarkable success for the engineers and workers who built the LHC as much as for the scientists who used the enormous machine to find the fabric that binds much else together. As it wouldn't go amiss to praise the thousands that built this Colossal machine as much as the theorists who proposed the idea because without the hard work of these people the Higgs field would still be theoretical.

  • rate this
    +84

    Comment number 1137.

    Its is simply amazing what dedication and perseverance can do. Hats off to the capable scientists who put their lifetimes in the pursuit of the science for the benefit of everyone. BUT , it is such a shame that science remains the least paid and most mocked profession in the world with people working in this field making a pittance compared to the salaries of bankers and their like. Shameful !

 

Comments 5 of 17

 

More Science & Environment stories

RSS

Features & Analysis

BBC Future

(Thinkstock)

How polio eased Cold War tensions

In conflict, Hungary faced another enemy Read more...

Programmes

  • French fashion designer Jean Paul Gaultier HARDtalk Watch

    French fashion designer Jean Paul Gaultier on why he uses unconventional models in shows

BBC © 2014 The BBC is not responsible for the content of external sites. Read more.

This page is best viewed in an up-to-date web browser with style sheets (CSS) enabled. While you will be able to view the content of this page in your current browser, you will not be able to get the full visual experience. Please consider upgrading your browser software or enabling style sheets (CSS) if you are able to do so.